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Abstract:

In this paper, Modified Variational Iteration Method is used to solve some nonlinear Volterra Integro-Differential

equations of the second kind. With illustrative examples, the method provides a sequence of functions which
converges to the exact solution of the problem by using three iterative steps without discretization of the variables.
Comparison of the approximate solutions of this method with other methods shows that Modified Variational
Iteration scheme is very effective, accurate, more promising and readily implemented.
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Introduction

Different numerical methods have been used by physical and
engineering researchers in solving Volterra Integro-
differential equations. Many of these methods have led to
accurate and reliable solutions. Brunner (1986) employed high
order numerical methods for solving Volterra Integro-
differential equations. Day (1967) used trapezoidal rule to
devise a numerical method for solving nonlinear volterra
integro-differential equation. El-Sayed and Abdul-Aziz (2003)
compared Adomian decomposition method and Wavelet-
Galerkin method in solving Integro-differential equations.
Ghasemi et al. (2011) applied He’s homotopy perturbation to
solve nonlinear Integro-differential equation. Linz (1969)
derived a fourth order numerical method for solving nonlinear
volterra integro- differential equations of the second kind.
Mahmoud and Mahdi (2013) used a numerical method with
new orthogonal basis function set to solve nonlinear Volterra-
Fredholms integral equations. Maleknejad et al. (2011) used
hybrid Legendre polynomials with Block-pulse functions to
obtain a numerical solution for nonlinear Volterra-Fredholms
integro-differential equations. Mehdiyeva et al. (2013)
suggested some ways in constructing hybrid method for
solving nonlinear volterra integral equations of the second
kind. Nadjafi and Ghorbani (2009) confirmed that He’s
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homotopy perturbation method is an effective tool for solving
nonlinear integral and integro-differential equations. Prakash
and Santanu (2015) converted Lane-Emden equations of the
first and second kinds into Volterra integro-differential
equations and then solve them using Legendre multi-wavelet
method. Saadati et al. (2008) made a comparison between the
variational iteration method and trapezoidal rule in solving
linear integro-differential equations. Saeedi, Tari and Masuleh
described the operational Tau method for solving nonlinear
Volterra Integro-Differential equations of the second kind.
Venkatesh et al. (2012) applied Legendre wavelet direct
method for solving integro-differential equations. Wazwaz,
Rach and Duan used Adomian decomposition method for
solving the Volterra integral form of the Lane-Emden
equations with initial values and boundary conditions. Zhao
and Corless (2012) adopted compact finite difference method
in solving integro-differential equations.

In this paper, Modified variational iteration method is used to
solve some nonlinear Volterra integro-differential equations
of the second kind. Some numerical examples are given with
their exact and approximate solutions. Tables showing
absolute errors and comparison with existing methods are
used to demonstrate the accuracy and efficacy of this method.

Consider the general form of the non-linear, VVolterra, Integro-Differential equations of the second kind

u™(x) = f;(x) + X0 4; J)) (K; (x, )F u(t))dtu*(0) = ¢, 0 S k < (n—1). )

uM™(x) indicate the nth derivatives of u(x), ¢, are constants that represent the initial conditions and F(u(t)) is non-linear;
u(x), f;(x) are assumed to be real and A; are real finite constants, F, f;, and K; are continuous functions and u is the unknown

function to be determined

Analysis of the Method
Consider the differential equation Lu + Nu = g(x)

where L, N are linear and non linear opertors, g(x) is the non homogeneous term. The correction functional for equation (2) is

given as

U1 (0 = w0 + [ ME) L (§) + Ny (&) — g(&)dé

Ais a general Lagrange’s multiplier, which can be identified optimally via integration by parts and by using a restricted

variation.
Setting Lu; (£) = u;(&).
F® (w'(©) dg = M@ ui(9) — [0 (wi(9)de.

@ (u(©) e = MO w (§) = X (©@i(®) + [ 2 (©ui(§)de
S (w"(©) de = M@ w"(§) = @@ (§) + 2" ©w(® — [ 2" ©wi(§)dg
S (w(©) de = MO u;"(§) =N @@ @) + 2" @ (§) =2 @uwi(©) + [ 1" ©w(©)de J
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The generalized integration by parts is

S MW (©)de = MO w1 (E) = X (©w" () + 1 (Ow"3(E) — -~ (D" [[ AN (©wi(€))de

Where L(§) may be a constant or a function, and 3 is a restricted value that can behave as a constant, ; is considered as
restricted variationand du; = 0, where § is the variational derivative. The extremum condition of u;,, requires that du;,; = 0
and this yields the stationary conditions:

1+ Mgy =0, x'|€:x =0 ,hence L= -1 7

The successive approximations u;,4, i = 0, of the solution u(x) will be obtained by using selective functions u;(x). The Non-
linear term is expressed in a unique way that gives a better approximation than other numerical methods.
A special case of (1) is

u® () + 4 [P k(x, Hu® (O u (O dt = g(x): ®)

a
Subject to the initial conditions u®™(0) = ¢, where ¢,, ¥ = 0,1,...(n — 1) are real constant and p, m are integers with p <
m < n.

In solving (1), consider the following general functional equation of the form

Lu=f+N(u;)
where fis a known analytical function, N(u;) is the nonlinear operator which is decomposed as
N(2 o u) = N(uo) + X {N(Zj=o ) = N(Zj=o )} ©)

u;(x) are polynomials of x, N(up + uy +uy + ) = N(ug) + X721 {N(up + ug + - +u;) —=N(up +ug + - +u;_1)}
The recurrence relations are defined as

up = f
u; = N(uo)
uz = N(ug +u3) — N(uo)
uz = N(up +uy +u,) — N(ug + uyg) (10)

Uiz =NQ@g+u; +4+u)—Nug+u ++u_q) i=1,2,..
Assume a series solution of the form  u = X2, u; (11)
The non-linear term in (3) can be written as Nii; (€) = Nu; (&)
The nth term approximate solution in (10) isug + u; + -+ u;4; = N(ug +uy + -+ u;)
u = Yihui(x)
Apply £ to the recurrence relation for the determination of the components, the
(n + 1)th approximation of the exact solution for the unknown function u(x) is obtained as
W () =NQg+uy +-+u) =Ny +ug ++u_4) =L (N +uy + - 4u) — LN +uy + -+ u;_4)
The solution is constructed as
u(x) = L71Y 2w, (x),n =0 (12)
Ui (1) = w00 + [ &) (L (§) + N (&) — g(&)dé (13)
The modified algorithms is formulated as

Ui () = () + [ M@ [Lw(§) — g(®) + L7 TiZhu;(®)]de

U1 () = w0 + [F (D" 5 (€ = 0 () — g© + £ [F k(6T Bishwi (9)dr]de (14)

Numerical Examples

In this section, modified variational iteration method is used to solve some non- linear Volterra integro-differential equations of
the second kind.These numerical results will be compared with some other methods.

Example 1: Consider the nonlinear Volterra Integro-Differential equation (Nadjafi and Ghorbani, 2009)

u(x)=1+ fox u(u'(dt, for x € [0,1]. (15)
The exact solution is U, (X) =v2tan (%) The correction functional for (15) is

Uipr () = 0,0 + UG [Lug(§) — 1 — [ L7 B, (0, (1)dr]de

Making the functional stationary and noting that ; is a restriction variation with 3&i; = 0. So, (4) and (5) give
14+Mezr =0 and x|§:x=0

The Lagrange’s multiplier can be identified as A = —1

U1 () = u; (o) — [ [Lw(§) — 1 — ff L7350 (0T (r))dr]de, (16)

From (6) u'(x) — 1 = [, u'(Yu(t)dt, setting [ u'(Du(t)dt = 0

Let L(w) =u'y(x)—1=0
Using (14), the zeroth approximation is

uy(x) = x. 17)
Other approximations can be obtained as
w0 =x+ <t (18)
_ 1 4 1 7 I 10
u,(x) = - — —
2 x+6x+36x+648x
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35615657
1
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22
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Table 1: Computations showing comparison of some results with MVIM on Example 1

Power Series Method

Compact Finite Difference

Homotopy Perturbation
Method (HPM) [4, Nadjafi

Modified Variational

i Sslﬁa;?;n (PSM) Method (CFDM) [15] and Ghorbani, 2009] Iteration Mﬁig()d (MVIN)
Approximate Absolute Approximate Absolute Approximate Absolute Approximate  Absolute
Solution Error Solution Error Solution Error Solution Error
0.0000 0.00000 0.00000 0.00E+00 0.00000 0.00E+00 0.00000 0.00E+00 0.00000 0.00E+00
0.0625 0.06254 0.06254 7.22E-07 0.06254 -4.00E-05 0.06254 1.00E-06 0.06254 0.00E+00
0.1250 0.12533 0.12532 6.54E-06 0.12533 -3.30E-04 0.12533 -3.00E-06 0.12533 0.00E+00
0.1875 0.18861 0.18860 6.41E-06 0.18860 -1.10E-03 0.18861 -4.00E-06 0.18861 0.00E+00
0.2500 0.25264 0.25263 7.14E-06 0.25263 -2.63E-03 0.25264 -3.00E-06 0.25264 0.00E+00
0.3125 0.31769 0.31777 8.04E-05 0.31769 -5.19E-03 0.31769 -2.00E-06 0.31769 0.00E+00
0.3750 0.38404 0.38404 3.50E-06 0.38403 -9.03E-03 0.38403 1.30E-05 0.38404 3.94E-15
0.4375 0.45201 0.45201 2.52E-06 0.45198 -1.45E-02 0.45199 2.30E-05 0.45201 7.33E-14
0.5000 0.52193 0.52193 5.15E-07 0.52187 -2.19E-02 0.52188 5.10E-05 0.52193 9.38E-13
0.5625 0.59417 0.59416 8.64E-06 0.59404 -3.15E-02 0.59405 1.19E-04 0.59417 8.92E-12
0.6250 0.66914 0.66914 1.93E-06 0.66890 -4.39E-02 0.6689 2.42E-04 0.66914 6.71E-11
0.6875 0.74732 0.74731 9.80E-06 0.74684 -5.93E-02 0.74685 4.70E-04 0.74732 4.18E-10
0.7500 0.82924 0.82923 8.97E-06 0.82837 -7.84E-02 0.82838 8.59E-04 0.82924 2.23E-09
0.8125 0.91552 0.91551 9.67E-06 0.91400 -1.02E-01 0.91401 1.51E-03 0.91552 1.04E-08
0.8750 1.00689 1.00687 1.62E-05 1.00432 -1.29E-01 1.00433 2.56E-03 1.00689 4.37E-08
0.9375 1.10419 1.10416 3.32E-05 1.10002 -1.63E-01 1.10002 4.17E-03 1.10419 1.67E-07
1.0000 1.20846 1.20838 8.02E-05 1.20184 -2.02E-01 1.20185 6.61E-03 1.20846 5.86E-07
Table 2: More computations showing comparison of results with MVIM on Example 1

Adomian Decomposition
Method (ADM) n=3

Conventional
Variational Iteration

Modified Variational
Iteration Method

X, Sgﬁicgn Method (CVIM) n=3 (MVIM) n=3
Approximate Absolute Approximate Absolute Approximate Absolute
Solution Error Solution Error Solution Error

0.00000 0.00000 0.000000 0.00E+00 0.00000 0.00E+00 0.00000 0.00E+00
0.09380 0.09394 0.093806 1.31E-04 0.09381 1.31E-04 0.09394 0.00E+00
0.21880 0.22056 0.218991 1.57E-03 0.21899 1.57E-03 0.22056 0.00E+00
0.31250 0.31769 0.313298 4.39E-03 0.31330 4.39E-03 0.31769 0.00E+00
0.40620 0.41775 0.408491 9.26E-03 0.40849 9.26E-03 0.41775 1.79E-14
0.50000 0.52193 0.505303 1.66E-02 0.50530 1.66E-02 0.52193 9.38E-13
0.62500 0.66914 0.638177 3.10E-02 0.63818 3.10E-02 0.66914 6.71E-11
0.71880 0.78784 0.742299 4.55E-02 0.74230 4.55E-02 0.78784 9.84E-10
0.81250 0.91552 0.851853 6.37E-02 0.85185 6.37E-02 0.91552 1.04E-08
0.90620 1.05466 0.969144 8.55E-02 0.96914 8.55E-02 1.05466 8.62E-08
1.00000 1.20846 1.097370 1.11E-01 1.09737 1.11E-01 1.20846 5.86E-07
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Example 2 Find the numerical solution for the first order Non-linear volterra integro differential equation
u'(x) =--2 + Jru?®dt, x € [01], (19)

The exact solutlon isu,(x) =—In (’Z—C +

U1 () = () + CA®Lui(§) + 2 = [FL7 Bio(@)2(1))dr]dg (20)

Making the functional stationary and noting that, i, is a restriction variation with &ii,, = 0. So, (4), and (5) give
Bugy = Su; + SAEW(€) — [N (§)8(w; (£)dE

Suis1 = 8 (§)(1 + Mey) — f; N'u;dlg

To find the optimal A() and calculate variation with respect to u;, we have the stationary conditions

N=0 ; 1+A==0 (21)

Using (21) as a natural conditions, the Lagrange’s multiplier is A = —1

W1 (0 = 4 (0 — [ [Lug(9) + 5 = [F L7 o(@ )2 (1)) dr]dE

Let L(u) = wo(x) +5=0

Using (14), the zeroth approximation is

1). The correction functional for (19) is

uo(x)z—%x
Other approximations are (22)
1 1 3
u(x) =-— —
1(x%) : x+ g
_ 1 1 3 1 5 3 7
u,(x) =-— — ) - — —_
2(%) Xt T T~
us(x) = 1 1o 3, 1 a4 1 s 1 6 1 4
T Y T Y T e T w0 Tt T Roes
ot s 1 o, 1 1 3
129024 146080 460800 901120
n 1 15

1064960

Table 3: Computations showing comparison of conventional VIM with MVIM
Conventional Variation Iteration

Method (VIM) MVIM
Xi Exact Approz(imate Error Approzdmate Error
n=5 n=3

0.0 0.000000000 0.000000000 0.00E+00 0.000000 0.00E+00
0.1 -0.048790164 -0.048790144 -1.92E-08 -0.048790 -1.92E-08
0.2 -0.095310180 -0.095309613 -5.67E-07 -0.095310 -5.67E-07
0.3 -0.139761942 -0.139757965 -3.98E-06 -0.139758 -3.98E-06
0.4 -0.182321557 -0.183059759 -1.56E-05 -0.182306 -1.56E-05
0.5 -0.223143551 -0.223099354 -4.42E-05 -0.223099 -4.41E-05
0.6 -0.262364264 -0.262261841 -1.02E-04 -0.262262 -1.02E-04
0.7 -0.300104592 -0.299898036 -2.07E-04 -0.299899 -2.05E-04
0.8 -0.336472237 -0.336095817 -3.76E-04 -0.336099 -3.73E-04
0.9 -0.371563556 -0.370928469 -6.35E-04 -0.370937 -6.26E-04
1.0 -0.405465108 -4044565353 -8.16E-12 -0.404477 -9.88E-04

Example 3: Find the approximate solution of the first order Non-linear volterra integro differential equation of the convolution
(Maleknejad et al., 2011)

u'(x) = —2sin(x) — isin(x) - gcos(Zx) + f;‘ cos(x — Hu?(Hdt, u(0) =1 (23)

The exact solution is u , (x) = cos(x) — sin(x)
The correction functional for (23) is

a8 =) + [ ADLL(E) + 250(6) + 3sin(e) + Seos(26) ~ [ £ Z cos(§ — 1) (1)dr]d
Making the functional stationary and noting that #,, is a restriction variation with 6ii,, = 0. Then (4) and (5) give

1 +}\|§=x =0 and )\’|§=x =0
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The Lagrange’s multiplier is obtained as A = —/

um(x)=ui(x>—f;‘[Lul-(f)+zsin(f)+§sin(5)+§cos(2<’)—LX L7 g cos(€ — DT ())dr]dE  (24)

Using the initial condition, the zeroth approximation is
uy(x) =1

Consequently, we have the following approximations

wx)=, 1 » 13 1 4 1 5 1 4 1 7
I=x=gxt+ g+ 20" 720 T 008 *
1 8 1 9
* 20160 * 20320 ©
uy(x) = x2 x3 1 4 1 5 1 5 7
bt e v 2 T T 0 om0
1 s 1 9 1 10 1 11 1 12
T 20160 Y T 20320 F 192 T 13900 © T 33600
N SR B 14 I s, 13 e
3628800 907200 2419200 7257600
B 1 L7 1 ME 1 19
812851200 406425600 1625702400
uz(x) = 2 3
X ox a1 o5 1 6 S 7
bt e P2 0 T 20" T s0a0 "
1 s 1 9 1 10 1 11
20160 * T 20320 60480 151200 ©
1 12 1 13
* 302400 © T 3628800 ©
| 46194479307996161918413 14 L s
1814400 2419200
n 1 16

108864000

Table 4: Computations showing comparison of some results with MVIM on Example 3

Applicability of Modified Variational Iteration Method in Solving Nonlinear Volterra Integro-differential Equations

Compact Finite Difference

Legendre wavelet method

Method (LWM) MVIM
Xi Exact [15] (Maleknejad et al., 2011; 13]
Approximate Error Approximate Error Approximate Error

0.0 1.000000000 0.999999 1.00E-06 1.000000 1.00E-06 1.000000 0.00E+00
0.1 0.895170749 0.895186 -1.53E-05 0.895171 -1.53E-05 0.895171 2.01E-11
0.2 0.781397247 0.781653 -2.56E-04 0.781397 -2.56E-04 0.781397 2.60E-09
0.3 0.659816282 0.659732 8.43E-05 0.659816 8.43E-05 0.659816 4.50E-08
0.4 0.531642652 0.530699 9.44E-04 0.531642 9.44E-04 0.531642 3.41E-07
0.5 0.398157023 0.398169 -1.20E-05 0.398155 -1.20E-05 0.398155 1.64E-06
0.6 0.260693142 0.260969 -2.76E-04 0.260687 -2.76E-04 0.260687 5.94E-06
0.7 0.120624500 0.120671 -4.65E-05 0.120607 -4.65E-05 0.120607 1.77E-05
0.8 -0.020649382 -0.020638 -1.14E-05 -0.020695 -1.14E-05 -0.020695 4.54E-05
09 -0.161716941 -0.161638 -7.89E-05 -0.161821 -7.89E-05 -0.161821 1.04E-04
1.0 -0.301168679 -0.301983 8.14E-04 -0.301389 8.14E-04 -0.301389 2.20E-04
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Conclusion

This paper demonstrated the applicability of the Modified
variational iteration method for approximating solution of
non-linear Volterra- integro-differential equation of the
second kind. The numerical results show that:

e  The method provides a sequence of functions which
converges to the exact solution of the problem by
using three iterative steps without discretization of
the variables.

e  This method reduces the computational difficulty in
solving non-linear volterra Integro-differential
equations of the second kind when compared to
other traditional methods.

e  The method is promising and readily implemented
which makes it more efficient tool and more
practical for solving non-linear integro-differential
equations.
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